An Implementation of Bounded Obligations

Martin S. Feather *
USC / Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292, USA

Email: feather@isi.edu

Abstract

An implementation of bounded obligations 1is
demonsirated. Bounded obligations facilitate the ez-
pression of requirements such as ‘a user must return
a book on or before its due date’. Our implementa-
tion translates a simple, declarative form of a bounded
obligation into the equivalent data structures and oper-
ations necessary to ensure ils adherence. Incremental
development and exploration is achieved by modifying
a ‘strict’ bounded obligation to become ‘violatable’ to-
gether with a way of recognizing when it has been vi-
olated. Again, a simple declaration to this effect is
appropriately translated by our implementation. Fi-
nally, response to such violations can also be declared
and aulomatically translated into running code. Our
implementation is described and illustrated on ezam-
ples drawn from a simple library system.

1 Introduction

Many systems contain requirements in the form of
‘bounded obligalions’, such as ‘a user must return a
book on or before its due date’. 1t would be useful,
therefore, to be able to state such obligations directly,
and be able to reason about and execute prototypes
and specifications containing them. In [12], a deontic
action logic is used to specify the semantics of bounded
obligations and of the error recovery associated with
violations of those obligations. Herein we present an
implementation of these same capabilities, which we
think has value for the following reasons:

e The execution of a prototype/specification that

makes use of bounded obligations is enabled, and

*Support from this work has been provided by Defense Ad-
vanced Research Projects Agency contract No. BAPT 63-91-
K-0006; views and conclusions in this document are those of
the author and should not be interpreted as representing the
official opinion or policy of DARPA, the U.S. Government, or
any other person or agency connected with them.

1068-3062/93 $3.00 © 1993 IEEE

114

thus the effects of the bounded obligations on be-
havior can be observed directly.

¢ Bounded obligations can be introduced incre-
mentally, so that the specification can first make
use of ‘strict’ obligations (that must always be
met), then can be relaxed to allow violations of
them, and finally augmented to respond to those
violations. Each such version of the specification
can be executed.

o Bounded obligations can be viewed as a special
case of more general ‘constraint programming’.
The relative ease of translating bounded obliga-
tions into a language base of constraint program-
ming facilities demonstrates the power of that
base.

e More speculatively, bounded obligations are but
one of a class of canonical exceptions — ways in
which the ‘normal’, ‘ideal’ behavior of a system
is gradually extended to accommodate deviations
from that norm/ideal.

The remainder of this paper is organized as follows:
in section 2 we describe bounded obligations and their
relationship to software development; in section 3 we
describe the language base into which our implementa-
tion translates bounded obligations; in section 4 we in-
troduce the example to serve as illustration; in section
5 we describe our implementation that translates dec-
larations of bounded obligations into the executable
language base; finally, in sections 6 we discuss related
work and conclusions.

2 Bounded Obligations and Software
Development

Obligations — for example, that having opened a
file, a system component must eventually close it —
occur frequently in statements of system requirements
and specifications. They dictate how the system and
its environment should respond to one another, and

what to do when they fail to meet those requirements.
Indeed, [15] argued cogently for their use as part of
the description of module interfaces, and [13] showed
a wide variety of forms of, and uses of, obligations.
Often, obligations are bounded, that is, some stricter
condition than ‘eventually’ is required.

Note that a bounded obligation is just a special form
of temporal constraint. It involves two predicates, P
and Q say; once the obligation has been established, P
must become true at or before @ becomes true. For ex-
ample, consider the following requirement (in the con-
text of a simple lending library): a user must return
a book on or before its due date. This is a bounded
obligation whose predicate P is that the book be back
in the library, and predicate Q is that the current date
exceeds the book’s due date. If the user returns the
book on or before the due date, then the obligation
has been met; if the due date passes but the user still
hasn’t returned the book, then the obligation has been
violated.

A further property often desired of bounded obli-
gations is that they be retractable — that is, having
established such an obligation, it should be possible
to retract the obligation before it becomes due. For
example, if the borrower of a piece of rental equipment
chooses to purchase that piece of equipment, payment
of the purchase price should retract the obligation to
return that rented equipment by its due date.

We believe it would be useful to be able to de-
clare bounded obligations directly, rather then force
the coding of their effects in terms of lower-level tem-
poral primitives. We interpret this to be one of the
points of [12], wherein the semantics of bounded obli-
gations are given in terms of deontic logic, and once
so described, used to specify a system in a clear and
straightforward manner. This is, of course, in keeping
with the focus of many specification languages, whose
very purpose is to facilitate the direct expression of
intent, requiring a minimum of manual translation on
the part of the specifier to convert mental intent into
equivalent formalism.

Another commonly shared belief is in the virtue of
developing software incrementally. For example in de-
veloping the software for some system, we might begin
with a simple form of the system in which only ‘nor-
mal’ behaviors are dealt with; once we are happy with
the system in this form we then go on to consider what
‘exceptional’ cases might arise, and how to respond to
them. It is important that bounded obligations should
admit to this incremental development approach. In
particular, we want to be able to start with strict obli-
gations, which must be met (in specification terms, a

115

specification containing such obligations would denote
only behaviors that meet all of their obligations; in op-
erational terms, if this is a running program, failure
to meet an obligation would be manifested as a run-
time error). Having dealt to our satisfaction with the
system employing strict obligations, we would then
‘relax’ chosen obligations to allow exceptions to them
to occur. Typically, we will then go on to introduce
appropriate responses to such unmet obligations.

In summary, the claims upon which this paper rests
are that:

¢ bounded obligations are useful for software spec-

ification, because they correspond to recurring
forms of system requirements,

¢ to be widely useful, bounded obligations should

be retractable, and/or violatable in such a way
that observation of such violations can used to
direct further processing, and

o incremental development of software may nee to

proceed through stages from ‘strict’ obligations
(which admit no violations) through violatable
obligations, and accompanying responses to those
violations.

In [12], deontic action logic was used to specify the
semantics of bounded obligations meeting these de-
sired qualities. The contribution of this paper is an
elegant implementation of bounded obligations also
exhibiting these desired qualities.

3 Target of Implementation, the Lan-
guage AP5

In order to explain our implementation of extended
obligations, we first describe the features of the target
language into which we translate them.

This language is AP5 [4], our group’s in-house re-
lational database extension of Common Lisp. AP5
provides relations (of arbitrary arity) as the basic
data representation for specification. The values of
APS5’s relations can be thought of as residing in an
in-core database, against which the running AP5 pro-
gram issues queries, and executes transactions to make
changes to those values. The features of AP5 that
we make most use of are those concerning the def-
inition of relations, and the mechanisms augmenting
database transactions. Additionally, AP5 and its asso-
ciated compiler supports the implementation of rela-
tions in terms of more efficient storage structures, but
since this aspect is not pertinent to our implementa-
tion of obligations, we will not discuss it further.

The key AP5 features that we do use are as follows:

Relations — typed relations of arbitrary arity whose
values are sets of tuples of the corresponding arity.
For example, a binary relation could be used to repre-
sent users’ social security numbers, declared as follows:
(defrelation SSN :types (user integer))

The assertion that a user ’U1 has social security num-
ber 123456789 is done by: (++ SSN 'U1l 123456789)
and similarly, retraction by: (-- SSN ’Ui 123456789)

Derived relations — relations whose values are de-
fined by a computation that depends upon the values
of other (less derived) relations. (In contrast, non-
derived relations have their values explicitly asserted
and retracted, as shown for the SSN relation above.)
For example, the following defines a derived relation
that holds of all users whose social security numbers
are greater than 500000000 (this may not be a partic-
ularly useful concept in the real world!):

(DEFRELATION HAS-BIG-SOCIAL-~SECURITY~NUMBER
:DEFINITION
((U) S.T. (> (SSN U =) 500000000)))

In the above, (SSN U =) is concise syntax for re-
trieval of the value related to U by the SSN relation.

Constraints — conditions (expressed in an extension of
first order logic), that must be true in every state of
the database. If a transition is attempted that would
result in a state in which one or more of these con-
ditions is not met, that whole transition is prevented
from occurring, and raises an exception.

For example, we can use a constraint to capture the
uniqueness of social security numbers, by requiring
that no user is related to more than one integer by
this relation, expressed as follows:

(NEVERPERMITTED
MULTIPLE-SOCIAL-SECURITY-NUMBERS
(E (U N1 N2)
(AND (SSN U N1)
(SSN U N2)
(NOT (= N1 N2)))))

MULTIPLE-SOCIAL-SECURITY-NUMBERS is the name of the
constraint.

(E (P N1 N2) (AND ...)) isthe condition, a predicate,
taking the form of an existentially quantification (‘E’
for existential) whose bound variables are U, N1 and N2,
and whose body is the conjunction (AND ...), captur-
ing the case in which the same user U is related to two
different ((NOT (= N1 K2))) integers by the SSN rela-
tion ((SSN U N1) and (SSN U N2)).

Constraint repairs — a constraint may be augmented
with a ‘repair’, namely a response to an attempted
transition violating the constraint. The purpose is to
(try to) automatically recover from such a transition

116

by running the response, which adjusts the transition.
The response takes the form of a computation of ad-
ditional actions to do within the same transition. The
union of the actions of the attempted transition and
the actions computed by the response, form a new
transition, which is then attempted in place of the
original transition. This process is iterative, insofar
as the new transition (augmented by the suggested
additions), may also lead to a violation of some con-
straint(s), leading to further repairs being activated
.... This process either terminates in a transition that
leads to a valid state (one in which all constraints are
satisfied), or hits a pre-set upper limit on the number
of iterations, and raises an exception.

For example, we may augment the social security con-
straint with a repair that removes the old value of the
social security number if a new value is asserted, thus:

(NEVERPERMITTED
MULTIPLE-SOCIAL-SECURITY-NUMBERS
(E (P N1 N2)
(AND (SSN P N1)
(SSN P N2)
(NOT (= N1 N2))))
:REPAIR (LAMBDA (P N1 N2)
(if (PREVIOUSLY (SSN P N1))
(-- SSN P N1))))

Automation rules — these trigger activity in response
to conditions arising. An automation rule comprises a
‘trigger’ (a predicate) and a ‘response’ (a statement).
Whenever a valid transition occurs, the trigger of each
automation rule is evaluated; for those automation
rules whose triggers evaluate to true, their responses
are then executed. Note the difference between con-
straint repairs and automation rules: the former re-
act to attempted transitions that violate constraints,
whereas the latter react to successfully completed,
valid, transitions.

For example, we may define an automation rule to
print out the identity of a user whose social security
number has changed, as follows:

(DEFAUTOMATION NEW-SSN
((U N) S.T. (START (SSN U N)))
(LAMBDA (U N) (PRIN1 U)))

NEW-SSN is the name of the automation rule,

((U N) S.T. (START (SSN U N))) is the condition the
rule is watching for (implicitly, an existential quantifi-
cation over variables U and N such that...), and
(LAMBDA (U N) (PRIN1 U)) is the code to be executed
in response to the condition being true — the lambda
variables get bound to the objects for which the con-
dition is true.

In discussing our implementation’s translation of
bounded obligations (section 5) into AP5, we will use
sans serif font to highlight the use of these AP5 con-
cepts.

4 Illustrative Example - the Library
System

As running illustration, we will use examples drawn
from the domain of a simple lending library of books.
As far as possible, we have striven to use the same
examples as in {12] — we will indicate all points of di-
vergence. All the sections of code in fixed width font
are taken from our our running implementation, and
have been changed only to the extent of re-formatting
to improve the textual appearance.

Our APS representation of the basics of the library
system is as shown next (explanation follows immedi-
ately afterwards):

(DEFRELATION BOOK :DERIVATION BASETYPE)
(DEFRELATION USERORLIBRARY :DERIVATION BASETYPE)
(DEFRELATION USER :DERIVATION BASETYPE
:TYPES (USERORLIBRARY))
(DEFRELATION LIBRARY :DERIVATION BASETYPE
:TYPES (USERORLIBRARY))

(DEFRELATION HAS :TYPES (BOOK USERORLIBRARY))
(DEFRELATION TODAY :TYPES (INTEGER))

The first four forms declare unary relations to serve
as types.
The next declaration is of binary relation HAS, which
holds between an object of type BoOK and an object of
type USERORLIBRARY, modelling who has the book.
The last declaration is of a unary relation ToDAY, which
holds of an object of type INTEGER, crudely modelling
which day it is.

The activity of borrowing a book is defined as fol-
lows:

(DEFUN BORROW (USER BOOK)
(IF (?? NOT (HAS BOOK ’LIBRARY))
(BREAK (FORMAT NIL "BOOK: ~A IS NOT IN THE
LIBRARY, SO CANNOT BE BORROWED" BOOK)))
(ATOMIC
(++ HAS BOOK USER)
(-- HAS BOOK ’LIBRARY)))

The function first checks to ensure the library has
the book, and if so, simultaneously retracts that the
library has the book (-- HAS BOOK ’LIBRARY), and as-
serts that the user has the book (++ HAS BOOK USER). It
is by enclosing these two statements within the ATOMIC
statement that causes them to be done ‘simultane-
ously’ in a single database transaction.

117

5 Our Implementation of Bounded
Obligations

5.1 Strict, retractable obligations

A bounded obligation that predicate P must become
true before the next state in which Q becomes true is
implemented as a pair of AP5 constraints and an a
relation to model whether or not the obligation is in
effect:

o The first constraint simply prohibits any state in

which Q holds and the obligation is in effect.

o The second constraint prohibits any state in
which P holds and the obligation remains in ef-
fect, but has an associated repair that removes
the obligation in such an instance. This repair
has the effect of automatically removing the obli-
gation once P has been achieved, so that if in some
later state Q becomes true, the first constraint will
not be violated, because the obligation, having
already been met, no longer holds.

Note that this implementation strictly prohibits

any violation of the obligation.

Our implementation allows the programmer to de-
clare an obligation in a straightforward manner. It
automatically generates the above two corresponding
APS5 constraints. This is far less burdensome on the
programmer than requiring their explicit definition.

A Strict Obligation of the Library Example:
The first obligation of the library example that we
consider is: a user must return a book within 21 days
of borrowing it. As in [12], we introduce the concept
of a ‘due date’, and express the obligation in terms of
this. Binary relation BOOKDUE is defined to hold between
a book and the date (if any) by which that book must
be returned to the library:

(DEFRELATION BOOKDUE :TYPES (BOOK INTEGER))
An obligation that requires the book to be back in the
library at or before the due date is declared as follows:

(OBLIGE "return books"
"(UB)"
"(HAS B ’LIBRARY))"

"(> (TODAY =) (BDOKDUE B =))")

The first argument,! return books, is the name of
the obligation. The second argument, (U B), is a list
of variables over which the obligation is to be existen-
tially quantified (details will become obvious shortly).
The third argument, (HAS B *LIBRARY)), is the predi-
cate that must be satisfied to meet the obligation. The
fourth argument, (> (TODAY =) (BOOKDUE B =)), is the

!Each argument takes the form of a Lisp string, hence the
surrounding string quotes

predicate that defines the state before which the obli-
gation must have been met, namely when today’s date
has passed the date on which the fine was due.

Our system generates the following implementation
from the above declaration:

(NEVERPERMITTED
Ireturn books obliged-but-not-donel
(E (UB)
(AND (OBLIGATION2 "return books" U B)
(NOT (HAS B ’LIBRARY))
(> (TODAY =)
(BOOKDUE B =)))))

(NEVERPERMITTED

|return books achieved-and-still-obligedl|

(E (UB)
(AND (OBLIGATION2 "return books" U B)

(HAS B ’LIBRARY)))
:REPAIR
(LAMBDA (U B)

(-- OBLIGATION2 "return books" U B)))

The first constraint, called |return books
obliged-but-not-donel, prohibits any state in which
its predicate, (E (U B) (AND ...)), is true, namely, in
which there exists objects U and B for which:

— the return books obligation? holds,
(OBLIGATION2 "return books'" U B),
— the library does not have B,
(NOT (HAS B ’LIBRARY)), and
— today’s date is past the due date of B,
(> (TODAY =) (BOOKDUE B =)).

The second constraint, called [return books
achieved-and-still-obliged|, prohibits the obligation
from holding between U and B if the library has B; asso-
ciated with it is the repair that retracts the obligation
(by means of the statement (-- OBLIGATION2 "return
books" U B)).

To make use of this obligation, the programmer
must extend the definition of borrow to insert the ap-
propriate due date, and to insert that the obligation
to return the book holds, as shown in the last two lines
added in the definition of the function borrow:

(DEFUN BORROW (USER BOOK)
(IF (77 NOT (HAS BOOK ’LIBRARY))
(BREAK (FORMAT NIL "BOOK: “A IS NOT IN THE
LIBRARY, SO CANNOT BE BORROWED" BOOK)))
(ATOMIC
(++ HAS BOOK USER)
(-~ HAS BOOK ’LIBRARY)
(UPDATE BOOKDUE OF BOOK TO (+ (TODAY ?) 21))
(++ OBLIGATION2 "return books" USER BOOK)))

2 (OBLIGATION: o a;...a;) for integer i is used to relate
the obligation named o to the objects a;... a;.

118

UPDATE is a syntactic a shorthand for simultaneously
retracting the old value and asserting the new value.

Note that our strategy is to have a single rule quan-
tified over users and books, and to use the OBLIGATION2
relation to turn on and off obligations for a given user
and book (turning off an obligation is the means by
which it can be retracted). This matches the style
in [12). An alternative would have been to instanti-
ate a separate rule for each particular user and book
for which the obligation was to hold, asserting and
de-asserting the rule in order to turn on and off the
obligation.

5.2 Violatable obligations

To render an obligation that predicate P must be-
come true before the next state in which Q becomes
true violatable’, that is, to allow behaviors in which
the obligation is not met, the AP5 implementation is
adjusted as follows:

o The constraint that prohibits any state in which

Q holds and the obligation remains in effect is
removed.

e A derived relation is introduced, defined to hold
in those and only those states in which Q holds
and the obligation is in effect.

The net effect of these two changes is to now permit
behaviors which violate the obligation, but the derived
relation introduced will automatically hold in states
in which the violation occurs. This derived relation
matches the ‘normative’ predicate introduced in [12].

Interestingly, this step corresponds exactly to the
weakening of constraints presented in [2]. Balzer used
it to allow databases to include instances of ‘excep-
tional’ data, that is, data not meeting integrity con-
straints weakened in this manner. Our application is
a special case of this, where we weaken specifically
the constraint introduced to require adherence to a
bounded obligation.

Our implementation allows the programmer to de-
clare an obligation to be ‘exceptionalized’. It automat-
ically retracts the constraint rule that enforced adher-
ence to the constraint, and adds the derived relation
recognizing violations.

Library example:
Conversion of the strict obligation to one which can be
violated, accompanied by a derived relation defined to
hold when the violation occurs, is achieved by issuing
the following declaration:

[(EXCEPTIONALIZE-OBLIGATION "return books") |

Recall that return books was the name given the
obligation in its original declaration. The effect of

this is to remove the constraint named |return books
obliged-but-not-donel, and introduce a derived rela-
tion of the same name, defined as follows:

(DEFRELATION

Ireturn books obliged-but-not-donel

:DEFINITION

((U B) S.T.

(AND (DBLIGATION2 "return books" U B)
(NOT (HAS B ’LIBRARY))
(> (TODAY =)
(BOOKDUE B =)))))

5.3 Response to violation of obligations

Typically, the system being specified should react
in some manner to the occurrence of obligation viola-
tions. Our implementation defines such a reaction in
terms of an AP5 automation rule, whose trigger is the
value of the derived relation that monitors for such vio-
lations becoming true, and whose response is whatever
code the specifier wishes to have executed.

Library example:
If a user fails to return a book before the due date,
then a fine will be issued and the due date on the book
will be extended by seven days.

Introduction of this response® to failure to return a
library book is achieved by the following declaration:

(RESPOND-TO-UNMET-OBLIGATION
"return books"
"(ATOMIC
(UPDATE USERBOOKFINE OF U B TO
(+ (THEONLY F S.T. (USERBOOKFINE U B F)
:IFNONE 0) 5))
(UPDATE BOOKDUE OF B TO
(+ (BOOKDUE B ?) 7)))")

Again, return books is the name originally given
to the obligation; this causes the generation of an au-
tomation rule that responds to the violation of the obli-
gation (detected by examining values of the derived
relation introduced earlier) by executing the provided
code (ATOMIC (UPDATE ...)):

(DEFAUTOMATION |return books unmet-responsel
((u B) s.T.
(START (lreturn books obliged-but-not-done]|
U B)))
(LAMBDA (U B)
(ATOMIC
(UPDATE USERBOOKFINE OF U B TO
(+ (THEONLY F S.T. (USERBOOKFINE U B F)
:IFNONE 0) §))
(UPDATE BOOKDUE OF B
To(+ (BOOKDUE B 7) 7)))))

3We have arbitrarily chosen the amount of fine to be 5.

Having done this, we can now experiment with our
library specification, observing that as a user fails to
return a book on time a fine is levied, and the due
date on the book is extended.

In fact, there is more to the treatment of fines:
The fine must be paid within seven days of tssue.
Note that this is another bounded obligation. To in-
troduce this, we proceed in a manner similar to the
way in which we introduced the obligation to return
books by their due dates. We declare a ternary re-
lation finedue to hold between a user, a book and a
day (in our library system, it is possible for a user to
accrue fines for failing to have returned several books,
at various different times; it is also possible for a book
to have been tardily returned by more than one user,
giving rise to fines for each of those users. Hence the
need to keep track of fines due not just per user or per
book, but per user and book): (DEFRELATION FINEDUE
:TYPES (USER BOOK INTEGER))

We then declare the following obligation:

(OBLIGE "pay fines"
"(U B)"
"(NOT (> (USERBOOKFINE U B =) 0))"
"(> (TODAY =) (FINEDUE U B =))")

As with the declaration of the obligation for re-
turning books, its four arguments are the name, pay
fines, by which to refer to the obligation, a list of vari-
ables, (U B), over which the obligation will be existen-
tially quantified, the predicate that is obliged to be
achieved, (NOT (> (USERBOOKFINE U B =) 0), namely
that the amount of fine not be greater than zero, and
the predicate that defines the state by which the obli-
gation must be met, (> (TODAY =) (FINEDUE U B =)),
namely, when today’s date has passed the date on
which the fine was due.

We re-declare our response to failing to return a
book to not only levy a fine, but also set the due date
of that fine, and establish the obligation to pay it:

(RESPOND-TO-UNMET-OBLIGATION
“"return books"
" (ATOMIC
(UPDATE USERBOOKFINE OF U B TO
(+ (THEONLY F S.T. (USERBOOKFINE U B F)
:IFNONE 0) 5))
(UPDATE BOOKDUE OF B TO
(+ (BOOKDUE B ?7) 7)))")
(IF (77 NOT (> (USERBOOKFINE U B =) 0))
(UPDATE FINEDUE OF U B TO
(+ (TODAY 7) 7)))
(++ OBLIGATION2 \"pay fines\" U B))")

Re-declaration replaces the old AP5 code with the
translation of the above.

A subtle case is one in which the user has already
accumulated a fine for not having returned that book

(possible if the user borrowed the book, returned it
after its due date [thus incurring a fine], re-borrows
the same book, and now is late returning it a second
time!); our response recognizes this case by the ex-
istence of a non-zero fine levied against the user for
that book, and if so, increases the fine and leaves un-
changed the already established fine due date.t

The obligation to pay a fine can be violated. The
library specification reflects this possibility, and spec-
ifies the following response:
If a fine is not paid on time, then the borrowing rights
of the user are blocked, the fine increased, and the due
date on the fine ertended by another 7 days.5
Our declarations to effect the above are as follows:

r(EXCEPTIUIIALIZE-OBLIGATIDH "pay fines") l

(RESPOND-TO-UNMET-OBLIGATION

“pay fines"

" (ATOMIC
(++ BLOCKED-BORROWING-RIGHTS U)
(UPDATE USERBOOKFINE U B TO
(+ (THEONLY F S.T. (USERBOOKFINE U B F)

: IFNONE 0) 5))

(UPDATE FINEDUE OF U B TO
(+ (TODAY ?7) 7)))")

Note again that the declaration need provide only
the name given to the original obligation, pay fines,
and the response code to be run when this obligation
is violated (ATOMIC ...). Our implementation’s trans-
lation of this into the equivalent AP5 constraint repair
is similar to the earlier treatment of the response to
return books, so we omit the result of this translation
here. To make use of this we manually augment the
definition of borrow to require that a user’s borrowing
rights not be blocked.

5.4 A Library Example Scenario

The following is a scenario that we have run
through the version of our library example with both
the obligations mentioned above (return books and
pay fines) declared along with their responses.

In the initial state, no user’s borrowing rights are
blocked, all the books are in the library, there are no
books due, today is day 1, there are no outstanding
obligations, no fines, and no due dates for fines. In this
and the successive stages, we give a simple printout of
this information in the following form:

4In [12], failure to return the book the second time around
appears not to cause the levying of any additional fine.

5In [12], the specified response also extended the due date
of the book, regardless of whether or not that book had been
returned and possibly re-borrowed by some other user.

120

BLOCKED USERS: NIL OBLIGATIONS: NIL

HAS: NIL FINES: NIL
DUE: NIL FINESDUE: NIL
TODAY: 1

Step 1: user *U1 borrows book ’B1:
(BORROW U1 ’B1), resulting in the state:

BLOCKED USERS: NIL OBLIGATIONS:
HAS: ((B1 U1)) ((return books U1 B1))
DUE: ((Bi 22)) FINES: NIL

TODAY: 1 FINESDUE: NIL

Step 2: The date advances to 23:
(UPDATE TODAY OF TO 23), resulting in the user U1 be-
ing fined for not having returned book ’B1 on time:

OBLIGATIONS:
((pay fines U1l B1)
(return books Ul B1))
FINES: ((U1 B1 5))
FINESDUE: ((U1 B1 30))

BLOCKED USERS: NIL
HAS: ((B1 U1))
DUE: ((B1 29))
TODAY: 23

Step 3: The user 'U1 returns the book ’B1:
(RETURNBOOK ’U1 ’B1), resulting in the removal of the
obligation to return the book (the due date sticks
around, but is of no further consequence, and would
be reset the next time the book gets borrowed), but
retention of the obligation to pay the fine, of course:

BLOCKED USERS: NIL OBLIGATIONS:

HAS: NIL ((pay fines U1l B1))
DUE: ((B1 29)) FINES: ((Ui B1 5))
TODAY: 23 FINESDUE: ((U1 B1 30))

Step 4: The date advances to 31:
(UPDATE TODAY OF TO 31)), resulting in the increment
of the fine, the extension of the fine due date, and the
blocking of user U1’s borrowing rights:

BLOCKED USERS: (U1) OBLIGATIONS:

HAS: NIL ((pay fines U1 B1))
DUE: ((B1 29)) FINES: ((U1 B1 10))
TODAY: 31 FINESDUE: ((Ui B1 38))

6 Related Work and Conclusions

As mentioned earlier, [12] provides the description
of bounded obligations which our implementation em-
ulates. The only significant difference is that their
formalism rests upon a deontic action logic, and thus
refers to the events that occur in the transitions be-
{ween states, whereas our implementation is state-
based, and refers to the contents of the states them-
selves.

Of the forms of obligations discussed in [13], our
implementation provides the capabilities of their re-
quiring to have .. .by .. .or-else ... construct, plus

permits the retraction of such obligations. The AP5
system upon which our implementation is based is
akin to what they call a system that handles ‘tran-
sitional violation’ by means of ‘an abstraction which
makes improper states invisible to the rest of the sys-
tem’. Whereas they show a ‘transaction’-like mecha-
nism expressed in terms of their obligation construct,
our implementation operates in the opposite direction,
demonstrating an obligation construct in terms of a
‘transaction’ mechanism.

We feel that to implement bounded obligations with
comparable ease on some other language base, the key
abilities we would need are those of:

— recognizing when a transaction violates arbitrary
integrity constraints,

— the option of running activities that (attempt) to
‘repair’ the transaction to make it lead to a consistent
state, and

— within those ‘repairs’, the ability to refer to the
details of transaction itself, as well as the consistent
state prior immediately prior to the attempted trans-
action.

See [10] for a more general discussion of the relation-
ships between these kind of capabilities.

Other members of our group have explored the
virtues of building upon the AP5 constraint mecha-
nisms; in [8] these mechanisms lie to the heart of a
support environment for programming; in [14] coop-
erative software development is facilitated by allowing
proposed changes to be broadcast, so that where those
changes would clash with system-wide constraints,
they can be cooperatively adjusted prior to actually
making those changes, thus permitting, as the authors
put it, a ‘lazy’ style of consistency management. As
mentioned in section 5.2, Balzer has followed a differ-
ent approach to coping with changes that would vio-
late a constraint, namely adjusting the constraint to
permit exceptions, and marking those exceptions ac-
cordingly [2]. This latter is the one that corresponds
to our treatment of bounded obligations. Generally,
we find the AP5 environment to be conducive to in-
vestigations of a variety of software research issues.

The idea of permitting violatable constraints has
also been studied in [3], wherein a properties of, and
algorithms for, constraint hierarchies are presented.
Briefly, these permit the statement of preferential con-
straints, which the system must try to satisfy, but is
not required to do so. A very similar approach is to be
found in [9], wherein constraints are organized into a
relazation lattice. Our naive impression of how the re-
quirements of the library example might be expressed
in this style are along the lines of:

121

Most preferred: A user returns a library book by its
due date.

Nezt most preferred: The user who has failed to return
a library book by one or more of its due dates will be
fined an amount equal to the standard fine multiplied
by the number of due dates missed.

Most preferred: A user will pay a fine by its due date,
etc.

The impression we have is that constraint hierarchies
provide a powerful, general purpose mechanism, but
as with AP5’s constraint mechanisms, there is some
distance between the natural statement of bounded-
obligation style requirements and their encoding in
terms of these mechanisms.

Incremental software development, in which an
overly ideal but easy to comprehend version of some
system is developed first, and thereafter incrementally
elaborated to deal with the complexities of the excep-
tional cases, is also a continuing theme of investigation
both within our group and in the broader community.
Our group has developed a library of so-called ‘evolu-
tion transformations’ [1, 6, 11], which are applied to
create the next version of a specification by modifying
the semantics of the current version. Our translators
for the declarations of ‘exceptionalize’ and ‘response’
to bounded obligations could be regarded as simple
such evolution transformations.

To conclude, we speculate that bounded obligations
could be linked to even higher-level goals of system
design. For example, the purpose of levying fines
against users is to encourage users to return books
on time (which in turn is to facilitate the fair distri-
bution of limited resources — books — among the
library users). Likewise, once fines have been levied,
users need to be encouraged to pay them (for other-
wise they would be no deterrent to the tardy return
of borrowed books), hence the ultimate threat of re-
moving a user’s borrowing rights. Thus we see that
bounded obligations, and the responses if they are vio-
lated, are themselves implementations of some higher-
level objectives. We think it would be interesting to
explore their inclusion within the higher-level consid-
erations of requirements and design such as have been
reported in [7, 5]. Seen in this light, the content of
bounded obligations are not arbitrary; rather, there
are canonical forms of exceptions to constraints, and
canonical responses to such exceptions (that both dis-
courage the occurrence of those exceptions, and help
restore the preferred state of the system). It would be
poor design to impose an obligation on an agent who
does not have the capability to meet that obligation
(e.g., impose the obligation on a library user to ensure

that another, unrelated, user returns a book). Simi-
larly, it would be poor design to impose an obligation
on an agent and also give the agent the capability to
retract the obligation (e.g., impose the obligation on a
library user to return a book and also give that user
the capability to retract that obligation - presumably
only the library staff should have such a capability).
This is an area we feel is deserving of further investi-
gation.

Acknowledgements

Bob Balzer’s Software Sciences Division here at
ISI, of which I am a member, has provided the re-
search context and foundation for this work. Partic-
ular thanks are due to Don Cohen, one of the imple-
mentors of AP5, for his advice on its use.

References

[1] R. Balzer. Automated enhancement of knowledge
representations. In A. Joshi, editor, Proceedings,
9th International Joint Conference on Ariificial
Intelligence, Los Angeles, pages 203-207, August
1985.

(2] R. Balzer. Tolerating inconsistency. In Proceed-
ings, 13th International Conference on Software
Engineering, Austin, Tezas, USA, pages 158-165.
IEEE Computer Society Press, August 1991.

(3] A. Borning, B. Freeman-Benson, and M. Wilson.
Constraint hierarchies. Lisp and Symbolic Com-
putation, 5:223-270, 1992.

[4] D. Cohen. Compiling complex database tran-
sition triggers. In Proceedings, ACM SIGMOD
International Conference on the Management of
Data, Portland, Oregon, pages 225-234. ACM
Press, 1989. SIGMOD RECORD Volume 18,
Number 2, June 1989.

[6] A. Dardenne, A. van Lamsweerde, and S. Fickas.
Goal-directed requirements acquisition. Science
of Computer Programming, 20(1-2):3-50, April
1993.

[6] M.S. Feather. Constructing specifications by
combining parallel elaborations. IEEE Trans-
actions on Software Engineering, 15(2):198-208,
February 1989.

122

[7] S. Fickas and P. Nagarajan. Critiquing soft-
ware specifications. IEEE Software, pages 37-47,
November 1988.

[8] N. Goldman and K. Narayanaswamy. Software
evolution through iterative prototyping. In Pro-
ceedings of the 14th International Conference
on Software Engineering, Melbourne, Australia,
1992.

[9] M.P. Herlihy and J.M. Wing. Specifying graceful
degredation. IEEE Transactions on Parallel and
Distributed Systems, 2(1):93-104, January 1991.

[10] R. Hull and D. Jacobs. Language constructs for
programming active databases. In Proceedings of
the 17th International Conference on Very Large
Data Bases, pages 455467, 1991.

[11] W.L. Johnson and M.S. Feather. Building an
evolution transformation library. In Proceedings,
12th International Conference on Software Engi-
neering, Nice, France, pages 238-248.IEEE Com-
puter Society Press, March 1990.

[12] S.J.H. Kent, T.S.E. Maibaum, and W.J. Quirk.
Formally specifying temporal constraints and er-
ror recovery. In Proceedings of the IEEE Interna-
tional Symposium on Requirements Engineering,
San Diego, CA, USA, January 1993, pages 208~
215. IEEE Computer Society Press, 1993.

[13] N.H. Minsky and A.D. Lockman. Ensuring
integrity by adding obligations to priveleges.
In Proceedings, 8th International Conference on
Software Engineering, pages 92-102. IEEE Com-
puter Society Press, 1985.

[14] K. Narayanaswamy and N. Goldman. “Lazy”
Consistency: A Basis for Cooperative Software
Development. In Proceedings of the Confer-
ence on Computer Supported Cooperative Work,
Toronto, Canada, pages 257-264. ACM Press,
1992.

[15] D.E. Perry. Version control in the inscape envi-
ronment. In Proceedings, 9th International Con-
ference on Software Engineering, Austin, Tezas,
USA, pages 142-149. IEEE Computer Society
Press, 1987.

